baito logo
    navigation?.buttons?.createJob?.text
    vor 7 Tagen
    Technische Universität Berlin header
    Technische Universität Berlin logo
    Vollzeit
    Teilzeit
    Junior
    Mid-Level
    22.11.24
    #wissenschaft#uni#berlin

    Wissenschaftliche*r Mitarbeiter*in (d/m/w) - Entgeltgruppe 13 TV-L Berliner Hochschulen - 1. Qualifizierungsphase (zur Promotion)

    Jetzt bewerben

    Ausschreibung IV-547/24

    Fakul­tät IV - Insti­tut für Ener­gie- und Auto­ma­ti­sie­rungs­tech­nik / FG Elek­tro­ni­sche Sys­teme der Medi­zin­tech­nik

    Wiss. Mit­ar­bei­ter*in (d/m/w) - Ent­gelt­gruppe 13 TV-L Ber­li­ner Hoch­schu­len - 1. Qua­li­fi­zie­rungs­phase (zur Pro­mo­tion)

    Teil­zeit­be­schäf­ti­gung ist ggf. mög­lich

    Aufgabenbeschreibung

    Das Fachgebiet Elektronische Systeme der Medizintechnik (MTEC) forscht an Methoden des maschinellen Lernens für akustische, visuelle und elektrophysiologische Signale.
    Hierzu nutzen wir Konzepte und Methoden der Signalerfassung und -verarbeitung, der Statistik und Informationstheorie, und des maschinellen Lernens aus strukturierten Daten, inspiriert durch aktuelle Erkenntnisse der Neurowissenschaften.
    Anwendungen liegen beispielsweise in der Spracherkennung und -steuerung im medizinischen Umfeld und in der multimodalen Sprachsignalerfassung und Signalverarbeitung für Hörhilfen und multimodale Kommunikation, auch in virtuellen Realitäten.
    Aktuell suchen wir einen wissenschaftlichen Mitarbeiterin in diesen Themenbereichen.
    Der
    die erfolgreiche Bewerber*in soll Forschung und Lehre in einem dieser Bereiche durchführen und eine aktive Rolle in der Lehre und der Betreuung der Studierenden spielen.

    Erwartete Qualifikationen

    • Erfolgreich abgeschlossenes wissenschaftliches Hochschulstudium (Master, Diplom oder Äquivalent) im Bereich der Elektrotechnik, Technischen Informatik, Informatik oder Medizinphysik mit sehr guten Ergebnissen
    • Sehr gute Programmierkenntnisse in Python, Matlab, Java oder C/C++
    • Erfahrungen in der Implementierung von Machine-Learning-Algorithmen
    • Die Fähigkeit zum Unterrichten in deutscher Sprache wird vorausgesetzt und ist zwingend für die Betreuung unserer Lehre im Bachelor erforderlich
    • Kenntnisse in mehreren der folgenden Bereiche:
    • Sprachsignalverarbeitung
    • Maschinelles Lernen, incl. statistischer Modelle und neuronaler Netze
    • Computational Neuroscience
    • Mikroprozessortechnik

    Wünschenswert:

    • Lust auf die Mitarbeit in einem jungen, internationalen Team und an eigenverantwortlicher, zielgerichteter Forschung

    Wir suchen hochmotivierte, neugierige und begeisterungsfähige Forscher*innen mit ausgezeichneten akademischen Leistungen und großem Interesse an der Entwicklung neurophysiologisch inspirierter maschineller Lernverfahren.

    Hinweise zur Bewerbung

    Ihre Bewerbung richten Sie bitte unter Angabe der Kennziffer mit den üblichen Unterlagen (in einem PDF-Dokument, max. 5 MB) ausschließlich per E-Mail an do******.*******sa@tu-******in.de.
    Mit der Abgabe einer Onlinebewerbung geben Sie als Bewerber*in Ihr Einverständnis, dass Ihre Daten elektronisch verarbeitet und gespeichert werden. Wir weisen darauf hin, dass bei ungeschützter Übersendung Ihrer Bewerbung auf elektronischem Wege keine Gewähr für die Sicherheit übermittelter persönlicher Daten übernommen werden kann. Datenschutzrechtliche Hinweise zur Verarbeitung Ihrer Daten gem. DSGVO finden Sie auf der Webseite der Personalabteilung:
    https://www.abt2-t.tu-berlin.de/menue/themen_a_z/datenschutzerklaerung/ .

    Zur Wahrung der Chancengleichheit zwischen Frauen und Männern sind Bewerbungen von Frauen mit der jeweiligen Qualifikation ausdrücklich erwünscht. Schwerbehinderte werden bei gleicher Eignung bevorzugt berücksichtigt. Die TU Berlin schätzt die Vielfalt ihrer Mitglieder und verfolgt die Ziele der Chancengleichheit. Bewerbungen von Menschen aller Nationalitäten und mit Migrationshintergrund sind herzlich willkommen.

    Technische Universität Berlin - Die Präsidentin - Fakultät IV, Institut für Energie- und Automatisierungstechnik, FG Elektronische Systeme der Medizintechnik, Prof. Dr. Kolossa, Sekr. EN 3, Einsteinufer 17, 10587 Berlin

    Fakten

    Veröffentlicht: 25.10.2024
    Anzahl Angestellte: ca. 7000
    Kategorie: Graduierten-Stelle, Wiss. Mitarbeiterin, Promotions-Stelle
    Kategorie TU Berlin: Wiss. Mitarbeiter
    in mit Lehraufgaben
    Aufgabengebiet: Elektrotechnik
    Beginn frühestens: 15.01.2025
    Dauer: befristet für 5 Jahre
    Umfang: 100% Arbeitszeit; Teilzeit ggf. möglich
    Vergütung: Entgeltgruppe E13

    Anforderungen

    Abschluss: Master, Diplom oder Äquivalent
    Sprachkenntnisse:
    • Deutsch (sehr gute Kenntnisse)

    Kontakt

    Kennziffer: IV-547/24
    Kontakt-Person: Prof. Dr. Kolossa

    Bewerben

    Bewerbungsfrist: 22.11.2024
    Kennziffer: IV-547/24
    per Post: Technische Universität Berlin
    • Die Präsidentin -
      ausschließlich per E-Mail
      per E-Mail: do******.*******sa@tu-******in.de

    Gehaltsschätzung

    Min

    Median

    Max

    Engagement Statistiken

    Aufrufe
    Likes
    Bewerbungen

    Deine zukünftigen Kolleg:innen

    bei Technische Universität Berlin

    Technische Universität Berlin Logo
    1234567
    vor 7 Tagen

    Verweise auf baito

    Du findest gut, was wir machen? Du kannst uns dabei unterstützen. Gib bei deiner Bewerbung an, dass du die Stelle bei baito gefunden hast.

    Jetzt bewerben

    Ähnliche Impact Jobs